Improving PySpark Performance: Spark performance beyond the JVM

This talk assumes you have a basic understanding of Spark (if not check out one of the intro videos on youtube - http://bit.ly/hkPySpark ) and takes us beyond the standard intro to explore what makes PySpark fast and how to best scale our PySpark jobs. If you are using Python and Spark together and want to get faster jobs - this is the talk for you.

This talk covers a number of important topics for making scalable Apache Spark programs - from RDD re-use to considerations for working with Key/Value data, why avoiding groupByKey is important and more. We also include Python specific considerations, like the difference between DataFrames/Datasets and traditional RDDs with Python. We also explore some tricks to intermix Python and JVM code for cases where the performance overhead is too high.

Presented by

Holden Karau

Holden Karau is transgender Canadian, an active open source contributor, and Spark committer. When not in San Francisco working as a software development engineer at IBM's Spark Technology Center, Holden talks internationally on Spark and holds office hours at coffee shops at home and abroad. Holden is a co-author of numerous books on Spark including High Performance Spark (which she believes is the gift of the season for those with expense accounts) & Learning Spark. She makes frequent contributions to Spark, specializing in PySpark and Machine Learning. Prior to IBM she worked on a variety of distributed, search, and classification problems at Alpine, Databricks, Google, Foursquare, and Amazon. She graduated from the University of Waterloo with a Bachelor of Mathematics in Computer Science. Outside of software she enjoys playing with fire, welding, scooters, poutine, and dancing.


Sponsors